Networks Research Lab (NetRL)

http://www.NetRL.cs.ucy.ac.cy
Adaptive non-linear control (IDCC)

- **robust and adaptive non-linear control theory** to tackle
 - difficulties due to large bandwidth-delay product
 - dynamic non-linear aspects
 - lack of (accurate) dynamic models

- derived simple **non-linear dynamic model** using fluid flow consideration
 - *robust adaptive* control to cope with uncertainties in model accuracy
 - features small set of design parameters
 - no maintenance of per flow states within the network

- derived **strong analytical results**
- verified by extensive discrete event OPNET based simulations
 - fairness – achieves max-min fairness
 - good steady state and transient behaviour
 - high utilisation

- since 1995 successfully employed these ideas to address a number of open problems
Adaptive non-linear control (IDCC)

Fluid Flow Model:
\[\frac{dx(t)}{dt} + C \frac{x(t)}{1 + x(t)} = \lambda(t) \quad x(0) = x_0. \]

Premium Traffic Controller:
Control Objective: Choose \(C_p(t) \) such that \(\lim_{t \to \infty} x_p(t) = x_p^{ref} \).

\[C_p(t) = \max \left[0, \min \left(C_{server}, \rho(t) \left(\frac{1 + x_p(t)}{x_p(t)} \right) \left(a_p x_p(t) + k_p(t) \right) \right) \right] \]

- \(C_{server} \) is the physical capacity of the server.
- \(a_p > 0 \) is a design parameter.
- \(x_p(t) = x_p(t) - x_p^{ref} \)
- \(k_p(t), \rho(t) \) are signals which improve the robustness of the algorithm and take into account the maximum rate allocated to the incoming traffic.

A1. Proof of stability of Premium Traffic control strategy
Theorem A1. The control strategy described by the equations (8), (9), and (10) guarantees that \(x_p(t) \) is bounded, and \(C_p(t) \leq C_{server} \) and \(x_p(t) \) converges close to \(x_p^{ref} \) with time, with an error that depends on the rate of change of \(\lambda_p(t) \).