Nature Inspired Techniques in communication networks

Andreas Pitsillides, Pavlos Antoniou & the NetRL team

http://www.NetRL.cs.ucy.ac.cy
A. Based on Lotka-Volterra (L-V) model
A. An Ecosystem View (L-V model)

- **Autonomous Network**
 - nodes initiate traffic flows
 - flows interact with each other
 - flows compete for available resources located at each node (e.g., buffer, bandwidth)
 - Goal: co-existence of flows

- **Ecosystem**
 - species live in nature
 - species interact with each other & non-living parts of their surroundings
 - compete for resources (e.g., food, water)
 - Result: co-existence of species
A. An Ecosystem View (L-V model)

Focus: small neighborhood (sub-ecosystem)

- CN-initiated flows compete for PN’s available resources (e.g., available buffer space)
- Each CN **self-regulates** and **adapts** the rate of its traffic flow to meet their needs for survival (**co-existence**)

Approach: rate adaptation of flows originating from each source node in order to avoid (or prevent) congestion based on relay node’s available buffer capacity.
Lotka-Volterra competition model

- Population dynamics modeled with simple balance equation
 - Describes how overall population changes from time to time as result of species interactions with resources, competitors, enemies, etc.
 - Examples: competition models, prey-predator models

- Generalized Lotka-Volterra competition model for n species

 $$dx_i/dt = x_i \left[r_i - \beta_i x_i - \left(\sum_{j=1}^{n} \alpha_{ij} x_j \right) x_i \right], \quad x_i(0) > 0, \quad i = 1, \ldots, n$$

 - $x_i(t)$: biomass (population size) of species i at time t \textbf{number of packets sent by each children node i}
 - r_i: constant intrinsic growth rate of species i in the absence of all other species
 - β_i: intra-specific competition coefficient (competitive effects among individuals of species i)
 - α_{ij}: the inter-specific competition coefficient (competitive effects of species j on growth of species i)
 - K_i: is the carrying capacity of species (maximum number of individuals that can be sustained by the biotope in the absence of all other species competing for the same resource) \textbf{resource capacity}
Equilibria and Stability Analysis

- Equilibria of the generalised Lotka-Volterra model
 \[\frac{dx_i}{dt} = rx_i \left\{ 1 - \frac{\beta x_i}{K} - \frac{a}{K} \sum_{j=1, j \neq i}^{n} x_j \right\} = 0, \forall i \in [1,n] \]
- Coexistence non-negative equilibrium solution \(x_i^* = x^* \)
 \[x_i = \frac{K}{\alpha(n-1) + \beta}, i = 1,\ldots,n \]
- Stability of equilibrium coexistence solution
 - all flows (species) co-exist (survive) when \(\alpha < \beta \)
 - inter-specific competition is weaker than intra-specific competition
Preliminary Results - getting a feel

- Example: $K = 8KB$ (buffer capacity at each node), $\alpha = 1$
 - $x_i(t)$ are evaluated every 1 sec (decision period $T = 1$ second)

\[\beta = 1.2, \quad r = 0.5 \]

\[n = 1: N^* = \frac{8192}{1 \times (1-1) + 1.2} \approx 6826 \]

\[n = 2: N^* = \frac{8192}{1 \times (2-1) + 1.2} \approx 3724 \]

\[n = 3: N^* = \frac{8192}{1 \times (3-1) + 1.2} \approx 2560 \]

\[n = 4: N^* = \frac{8192}{1 \times (4-1) + 1.2} \approx 1950 \]

- Scalability
 - as # of CNs scales up, rates of active CNs decrease
 - graceful performance degradation

- Adaptation
 - each CN self-adapts its sending rate
 - responsiveness

- Fairness
 - PN’s buffer capacity is fairly shared among active CNs

Instantaneous number of packets sent from each CN

CN–Children Node PN–Parent Node