Networks Research Lab (NetRL)

http://www.NetRL.cs.ucy.ac.cy

Andreas Xeros, PhD student (UCY)
Andreas Pitsillides (UCY)
Marios Lestas (UCY)
Maria Andreou
Petros Ioannou (USC, USA)
VANETS

- Vehicular Ad-hoc Networks (VANETS) recently received great attention as a tool to disseminate information among vehicles with the dual purpose of increasing road safety and comfort in driving
 - Information Propagation Probability in VANETS is an important metric to design such a system
 - initially focus on Intersections where there is no build in infrastructure, later expand to network
 - from the quantity representation of the probability we can estimate the minimum appropriate conditions under of which information propagation is most likely to occur
 - derived probability and compared with VISSIM simulator results

Vehicular Ad Hoc Networks

- Current Work – Our Contribution
 - Simulation validation of our theoretical analysis using real data of major Highways around Los Angeles with VISSIM
 - Estimate information propagation probability between two areas in a given time

- Future Plan
 - Study the improvement of information speed and message delivery probability by inserting road side units
 - Relax assumptions used (e.g. Random and Independent vehicle mobility, single lane roads)
 - Information Hovering in VANETs- Information hovers from one vehicle to another remaining in the vicinity of its anchoring geographical location
Information Propagation Probability on Intersections

- Based on our paper “Information Propagation Probability on Intersections in VANETS” published on June 2007 in the 3rd International Workshop On Vehicle-to-Vehicle Communications

- Problem Formulation
 - Intersection: I_j,
 - Roads: h_{ij} and h_{jk},
 - Points: R, M
 - Head of Inform.: veh$_1$
 - Angle: ϕ,
Information Propagation Probability on Intersections

- Ways to Propagate information on an Intersection
 - By transmitting

\[p_{h_{ij}h_{jk}} = p_{tr} h_{ij} h_{jk} + (1 - p_{tr} h_{ij} h_{jk}) \times p_{dr} h_{ij} h_{jk} \]
Results

- Conclusions: Information propagation probability increases:
 - When we increase time
 - When we increase the arrival rate of the road we want the information to be transmitted
Simulation

- Validation of Theoretical Analysis
- VISSIM – a powerful microscopic simulator
 - Developed by PTV, German company which provides software, consulting and research for travel, traffic and transportation planning
 - Licensed by UCY
 - Highly Parameterized, Easy to use
 - Creates an output file with the coordinates of vehicles at every simulation step
Simulation

• **Processing the output file of VISSIM**

 – We develop an application using C++ which reads the output file of VISSIM

 – Process multiple output files

 – The application is highly parameterized

 – User can define among others:

 • Vehicle Transmission range

 • Source and Target Area and/or Vehicle

 • Exact time of information creation

 • Inserting Road Site Units with different transmission range

 • Percentage of equipped vehicles