The need for security

- Mission-critical applications use sensitive information that need protection
- Sensitive information is exchanged over public networks
- Security design is usually not considered from the beginning of software development
- Availability of hacking tools
- Security requirements
 - Authentication
 - Confidentiality
 - Integrity
 - Availability
 - Accountability
 - Reliability
Healthcare security

• DITIS system
• Security infrastructure covering People – Systems – Procedures
 – Hardening security of components by configuring security features
 – PKI infrastructure
 – VPN connections for remote administration
 – Access control though role-separation
 – Security policies (i.e. password creation, updates, system usage, backups, fails safe plan etc)
 – Security education and training program
 – Legal documents supporting the Data Protection Law
 • Developers
 • Medical and paramedical personnel
 • Patients
WSN Security

• The need for security is even more critical in WSNs

• WSNs are used in many sensitive areas i.e. healthcare, military, environmental-related etc

• Limitations drive the security implementation in WSNs
 – Limited resources (energy, computation power, storage)
 – Hostile environment
 – Random topology
 – Dynamically changing topology
 – Insecure wireless medium
 – Attacks
WSN Key Research Security Areas

• Secure routing
 – Secures the routing process

• Key management
 – Procedures related to the generation, exchange, update and revocation of encryption keys

• Trust management
 – Builds and manages trust relationships between nodes

• Intrusion detection
 – Monitors the behavior of nodes and detects malicious activities

• Secure localization
 – Sensors securely determine their location

• Secure data aggregation
 – Secures the communication between nodes and aggregators
WSN Security Framework

• Integration of the key security areas under a common framework to support a spherical security approach
• A cross-layer approach to promote the efficient and effective cooperation of the security areas
• Support of adaptable security features based on operational conditions, security and application requirements
Routing in WSNs

- Mission-critical applications require a reliable operation
- Availability, reliability, resilience through multipath routing
- Confidentiality, integrity, authentication through secure routing
Secure multipath routing in WSNs

- Activities
 - *Threat model specification*, identifying adversary’s objectives and strategies against secure multipath routing protocols
 - *Design and evaluation framework development*, promoting the design of new protocols, their security assessment and comparison with similar protocols
 - *New protocol development*
 - addressing limitations of existing protocols
 - considering the security aspects of multipath routing instead using it only as a delivery technique
 - interoperating with other security areas to establish a secure, reliable and resilient multipath routing operation
 - *Attack patterns identification*, supporting intrusion detection features